
Synchronizing Dynamic Huffman Codes

Shmuel T. Klein1, Elina Opalinsky2, and Dana Shapira2

1 Dept. of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel
tomi@cs.biu.ac.il

2 Dept. of Computer Science, Ariel University, Ariel 40700, Israel
shapird@g.ariel.ac.il, elina.opalinsk@ariel.ac.il

Abstract. Traditional dynamic Huffman algorithms update the frequencies adaptively
after every character, according to the assumption that better compression can be
achieved when all previous characters are taken into account, justifying the slow pro-
cessing time. This, however, turns the encoded file into an extremely vulnerable one in
the case of even a single bit error. Since the above mentioned assumption is not neces-
sarily true, we explore blockwise dynamic Huffman variants, where the Huffman tree
is periodically, rather than constantly, updated. Experiments show that avoiding the
updates at every character and choosing larger blocks does not hurt the compression
performance, and may even improve it at times. Moreover, the new scheme seems to
be more robust against single errors introduced in the encoded file.

1 Introduction

One of the oldest, yet still popular, data compression techniques is Huffman coding [5].
The focus of the current research is on its dynamic version, where the code gets
repeatedly updated while more characters of the input file are being processed. In
particular, we consider the case that the compressed file has been transmitted over
a network, and a communication error occurred within the encoded file, causing a
change in one of its bits.

Given an input file which we shall call a text, even though the algorithm applies
also to non-textual data, a first step is to decide how to parse the text into a set
of elements to be encoded. Typically, these elements can be the characters of some
standard alphabet Σ, like ascii, but one could as well encode character pairs or
triplets, or even words or phrases or word fragments, as long as there is a well-defined
way to perform the parsing unambiguously.

This parsing can be used to derive the set of frequencies {w1, . . . , wn} of the n
distinct elements of the text. Huffman’s algorithm then assigns codeword lengths
{ℓ1, . . . , ℓn} to the corresponding elements of Σ, so that the average weighted length
∑

n

i=1
wiℓi is minimized, yielding a minimum redundancy code. The code may be

represented by a binary tree known as a Huffman tree, whose leaves are associated
with the elements of the alphabet Σ. Edges in the tree pointing to a left or right child
are labeled by 0 or 1, respectively, and the concatenation of the labels on the path
from the root to a given leaf yields the corresponding codeword.

Static Huffman encoding thus requires a double pass over the data: the first for
gathering the statistics on the distribution of the elements, on the basis of which the
code can be built, and the second for the actual encoding process, once the code is
given.

An alternative to this two-pass procedure could be an adaptive method in which
both encoder and decoder maintain, independently, a copy of the current Huffman

Shmuel T. Klein, Elina Opalinsky, Dana Shapira: Synchronizing Dynamic Huffman Codes, pp. 27–37.

Proceedings of PSC 2018, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06484-9 c© Czech Technical University in Prague, Czech Republic

28 Proceedings of the Prague Stringology Conference 2018

tree, which is based on the frequencies of the elements processed so far. The trivial,
and very costly, solution would be to reconstruct the Huffman tree from scratch
in each iteration. Faller [1], Gallager [3] and Knuth [10] proposed, independently,
essentially the same improved one-pass method, known as the FGK algorithm, for
generating a Huffman tree according to the probabilities of the characters in the
already processed portion of the file. The FGK algorithm was later enhanced by
Vitter [15], who maintains the adaptive model and creates the encoding “on the fly”.

One of the issues of transferring data over a network, is the ability to synchronize
when communication errors occur. In [6], the problem of searching directly within a
Huffman compressed file is investigated. Given a pattern P and a compressed file,
instead of decompressing and searching for P in the decompressed file, the compres-
sion algorithm is applied to the pattern, and the resulting encoding is sought within
the given encoded file. To announce a match of the pattern in the original file, the
problem is to verify whether the detected occurrences are aligned on codeword bound-
aries. The algorithm proposed in [7] is based on the tendency of Huffman codes to
resynchronize quickly after errors, even if decoding does not start at the beginning of
a codeword [9].

Consider the case of a single bit error occurring during the transmission of the en-
coded file. In case the single error is a bit flip, and the file was encoded using some fixed
length code, only a single codeword is affected. But in the case of a variable length
code, like Huffman’s, or if the error is the addition or deletion of a bit, synchronization
with the correct decoding may also be lost. For example, let a part of the alphabet be
{. . . , M, N, O, S, U, . . .} with codewords {. . . , 0001, 1011, 010, 0010, 10010, . . .}, respec-
tively, and suppose the first bit of the encoding representing the string MOON has
been lost. The correct decoding, is given in the lower part of Figure 1, whereas the
erroneous decoding, SUN, is given in the upper part. Note that the codeword boundary
just before N, in both decodings, is a synchronization point. We see that even a single
bit error may have dramatic consequences, literally changing night into day. . .

S U N
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

0 0 0 1 0 1 0 0 1 0 1 0 1 1

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

M O O N

Figure 1. Synchronization in Static Huffman Encoded Files

Generally, suppose an error has occurred in one of the bits of the encoded file,
which causes the decoding to be incorrect, and denote by c1 the last codeword of the
resulting wrong decoding before the synchronization point. Let c2 be the last codeword
of the correct decoding before the synchronization point. Then either c1 must be a
proper suffix of c2 or vice versa. A code is said to have the affix property, if none of its
codewords is either a prefix or a suffix of any other codeword. Therefore, the scenario
described above about the codewords c1 and c2 ending both at a synchronization
point is not possible if the code is affix, which is why such codes are also called
never-self-synchronizing in [4]. But such affix codes are extremely rare [2].

Previous research [6] empirically shows that synchronization is regained after typ-
ically a few tens of bits. However, the situation is much more involved when dynamic
Huffman coding is considered, due to the adaptive nature of the underlying model.

S.T.Klein, E.Opalinsky, D. Shapira: Synchronizing Dynamic Huffman Codes 29

This paper modifies the dynamic Huffman coding procedure, so that the result-
ing algorithm is more robust against errors when compared to the original dynamic
encoding. In fact, we generalize the dynamic Huffman compression of Vitter so that
the resulting encoding can mostly synchronize with the correct decoding after only a
few codewords. The paper is structured as follows. Section 2 presents the difficulty of
the dynamic Huffman algorithm of Vitter [15] to synchronize after a single bit error.
Section 3 proposes a generalized dynamic version which is more robust. Section 4
presents experimental results, and Section 5 concludes.

2 Synchronization in Dynamic Huffman Encoding

Dynamic Huffman encoding is highly vulnerable to occurrences of bit errors. In fact,
even a single incorrect bit might change the dynamic Huffman tree in a way that will
damage the remaining decoding completely.

Figure 2 visually presents an example of the effect of a bit flip introduced in the
dynamic Huffman encoded file. The left side of Figure 2 is the decoding of a correctly
encoded file (an excerpt from Alice in Wonderland), and the right side of Figure 2
is the decoding of the same file in which a single bit has been flipped. Characters
that were decoded correctly appear in the same font as their correct counterparts,
whereas incorrectly decoded characters are colored in red and boldfaced. As can be
seen in this example, an error may trigger a snowball effect.

The single bit flip causes the character x to be mistakenly decoded as F, but then
synchronization is seemingly regained, as for static Huffman coding. However, at this
stage, the frequency counts of the two decodings already differ for certain characters,
albeit only slightly. This small difference will trigger, 38 decoded characters later, an-
other erroneous decoding, in which xt thing w will be substituted by pnlocilr, where
we use the underscore to visualize a blank. There are thus even more different
updates, and the following wrong decoding is plained that they could not taswhich is
replaced by wh iothn o-n oW nTay ndtnlnha. Clearly, the initially small changes have a
cumulative impact, which materializes as gradually shorter correct stretches separat-
ing increasingly longer wrong ones, until the decoding becomes completely erroneous.
In several other examples we tested, the situation is even worse, and the divergence
is immediate rather than gradually as in Figure 2.

The following small example illustrates the difficulty of Vitter’s algorithm to cope
with errors. Consider the bit stream · · · 101111· · · . The dynamically changing Huff-
man tree after having read these bits is presented in Figure 3. A dynamic Huffman
tree is represented with a pair (freq , char) in its leaves, where char is the character
represented by the leaf and freq is its frequency in the file so far. Each internal node
contains the sum of the frequencies stored in its two children. A special leaf, labeled
NYT, is used when a new, Not-Yet-Transmitted, symbol is detected, and its frequency
is defined as zero.

Suppose that at the beginning of the decoding process of these bits, the tree is
the one given in Figure 3(a). Processing the first codeword 10, causes an increment
of the number of occurrences of r from 6 to 7, as shown in Figure 3(b). The following
bits are parsed into two consecutive codewords, 11, incrementing the number of the
occurrences of a from 9 to 10 in Figure 3(c) and finally from 10 to 11, given in
Figure 3(d).

Suppose that the encoded file has been corrupted and the second of the shown
bits was flipped, so that the entire bit stream consists of 1s. The erroneous decoding

30 Proceedings of the Prague Stringology Conference 2018

There was exactly one a-piece, all ’round.
The next thing was to eat the comfits; this
caused some noise and confusion, as the large
birds complained that they could not taste
theirs, and the small ones choked and had to be
patted on the back. However, it was over at last
and they sat down again in a ring and begged the
Mouse to tell them something more.
“You promised to tell me your history, you
know,” said Alice, ”and why it is you hate–C and
D,” she added in a whisper, half afraid
that it would be offended again.
“Mine is a long and a sad tale!” said the Mouse,
turning to Alice and sighing.
“It is a long tail, certainly,” said Alice, looking
down with wonder at the Mouse’s tail, “but why
do you call it sad?” And she kept on puzzling about
it while the Mouse was speaking, so that her idea
of the tale was something like this:–

There was eFactly one a-piece, all ’round.
The nePnloci lras to eat the comfits; this
caused some noise and confusion, as the large
birds comwh iothn o-n oWnTay ndtnlnhate
theirs, and the small ones choked and had to be
patted on the back. Ot”ever, it was over at last
and they sat down again in a ring and begged the
fmnrihdo tell them something more.
“Wdnr v omised to tell me your history uinrwan-

heqe hint Alice-ksnd why it is you hateN ohe

and Rkw she added in a pccwen cssd, a,rail that
it baDh rfthfgnojsgain;e “ o,othac a dv dita a

sao laleAk hioa the o, use-lurning tlI oose ano

ecighingOe:e RNiisAhs d. lnint-Nn niorodkp

aaio u tice- o lewi .n mr eane r.ton Urthe Aa

Eov- nint’k e vrbad or aa jaadd it saokcfIttlea
hwketr.genvhn ding aeY, it bcys olh h-ha rae

frciSi nawl o,l hsdsi,a ve th etals se m msoci

dtifc oceng”le eeed Sfu. y esil t,e a mdyhac j

hoed

Figure 2. Bit Flip in Dynamic Huffman Encoded Texts

26

9,a

15

6

11

3 3,d

3,cNYT

6,r5,b

27

9,a

16

6

11

3 3,d

3,cNYT

7,r5,b

28

10,a

17

6

11

3 3,d

3,cNYT

7,r5,b

29

11,a

18

6

11

3 3,d

3,cNYT

7,r5,b

(a) (b) (c) (d)

Figure 3. Correct decoding

is given in Figure 4. The parsing is now 11-11-11, thus incrementing the number
of occurrences of a from 9 to 10, then from 10 to 11, and finally from 11 to 12,
presented in Figures 4(a), (b) and (c), respectively. Before the number of occurrences
of a changes to 12, the shape of the Huffman tree gets updated, and its underlying
structure changes: before incrementing the contents of the leaf y with frequency 11,
and that of all its ancestors, Vitter’s algorithm calls for interchanging this leaf with
the highest ranked node also containing the frequency 11, if there is one. The rank of
a node is its index in a bottom-up, and within each level left-to-right, enumeration
of all the nodes. In our case, the left child of the root has also frequency 11, so the
left subtree and the leaf y are swapped, yielding the tree in Figure 4(d). Obviously,
the following bits are completely out of synchronization.

Although the erroneous bit belongs to a single codeword, it directly affects the
frequencies of two different codewords to start with, unlike for static Huffman cod-
ing, and might also trigger two snowball effects, so that the entire decoding may be

S.T.Klein, E.Opalinsky, D. Shapira: Synchronizing Dynamic Huffman Codes 31

26

9,a

15

6

11

3 3,d

3,cNYT

6,r5,b

27

10,a

16

6

11

3 3,d

3,cNYT

6,r5,b

28

11,a

17

6

11

3 3,d

3,cNYT

6,r5,b

29

12,a 17

6

11

3 3,d

3,c
NYT

6,r

5,b

(a) (b) (c) (d)

Figure 4. Incorrect decoding

damaged even faster. Going back to our example, the single error flipping 10 into 11

did not only reduce the number of occurrences of the symbol r corresponding to 10,
but also increased the number of appearances of the codeword 11, corresponding to
a. Since even for static Huffman coding a few codewords might be lost until synchro-
nization is regained, each such mistaken codeword boundary again might cause an
incorrect calculation of the frequencies of two codewords. Empirically checking this
phenomenon on our datasets, we found that the structure of the Huffman tree is often
changed before synchronization is attained, causing a complete loss of the remaining
decoding. To overcome the problem we propose a relaxed variant of the dynamic
Huffman compression that has the ability to cope with such errors, and generally
synchronizes with the correct decoding after only a few codewords.

3 Proposed Algorithm

The main idea of our algorithm is to blur the frequencies with the objective of turning
them to less sensitive to isolated errors. This is done on the one hand, by spacing out
the updates to be done at the end of a block of several characters, and on the other
hand by periodically rescaling the accumulated frequencies, for example, dividing
each of them by 2. To avoid zero-frequencies, which would force a special treatment
for disappearing and reappearing characters, one could initialize all frequencies with
1 and use upward rounding in the scaling, so that no frequency will fall below 1.

The rationale is the following. Spacing out the updates creates blocks within
which the algorithm behaves essentially like static Huffman coding. There is thus
a chance, if the error is not too close to a block boundary, that synchronization is
regained even before it has changed the shape of the tree. As to scaling, if at a
certain point, the distribution of the frequencies is {w1, w2, . . . , wn}, then consider-
ing {⌈w1/2⌉, ⌈w2/2⌉, . . . , ⌈wn/2⌉} instead will generally produce practically the same
Huffman tree. Indeed, the shape of a Huffman tree is mainly determined by the rel-

ative sizes of the frequencies, rather than by their absolute values, which is why
probabilities can be used instead of frequencies. Rescaling can thus achieve a triple
goal:

1. it helps keeping the involved frequencies within bounded limits;
2. it gives higher weights to recently seen characters, as the last frequencies are

divided by 2, but those accumulated in the block before are divided by 4, and,

32 Proceedings of the Prague Stringology Conference 2018

generally, the number of occurrences of any character in block i when counted
backwards from the last one, is divided by 2i;

3. small fluctuations of±1 in the frequencies may either be corrected by the rounding,
but even if not, there are good chances that the resulting Huffman trees are
identical. If so, the error will not propagate and its effect may be corrected at the
next synchronization point.

The fact that different, yet similar, frequency distributions may yield the same
Huffman tree has been investigated by Longo and Galasso [12]: the set of probability
distributions over a finite alphabet is given a “pseudometric”, and an upper bound is
derived for the distance from any probability distribution to the dyadic distribution
(in which all the probabilities are powers of 1

2
) giving the same Huffman tree.

On the other hand, the disadvantage of rescaling seems to be that the construction
of the Huffman tree will then not rely on true frequencies, but on approximate ones,
which, would one think, might hurt the optimality of the Huffman procedure. It should
however be kept in mind that Huffman codes are optimal only for static frequencies.
In the adaptive variant, actually not only for Huffman, but also for arithmetic coding
and for intrinsically adaptive methods like those of Ziv and Lempel [16,17], the basic
assumption is that the distribution of elements in the text seen so far (the past) is
identical, or at least a good estimate for, the distribution after the current point (the
future), but there is no guarantee for such an assumption to be true!

The orthodox adherence to the exact frequencies is thus not necessarily justifiable,
and it could well be that an approximation can produce results that are not inferior,
and maybe even better at times. A similar observation has been mentioned in [8]
in an application basing adaptive arithmetic coding on randomly chosen n out of 2n
preceding characters, rather than the most recent n, without incurring any noticeable
loss.

Once it has been agreed that our knowledge of the frequencies of the characters
in the processed text does not need to be perfect, this reinforces the idea that we
may change the constant updates after each read character, as advocated, e.g., in
Vitter’s algorithm, by periodic ones, to be performed only at the end of each block of
b characters, for some fixed block size b. This has the obvious advantage of speeding
up both compression and decompression, and our empirical results show that the
expected loss is very low, much less than 1% on all our tests, even with large blocks
like b = 16K. There were even instances in which the blockwise processing gave better
compression than Vitter’s variant, which corresponds to b = 1.

A first guess would be that the larger the blocksize b will be chosen, the less
accurate our estimate will be, which is consistent with our assumption of dealing
with a tradeoff: since a larger block implies obvious time savings, it is reasonable
to assume that this gain in time comes at the price of a certain loss in compression
efficiency. Our results, however, show that often, just the opposite is true! While for
large blocks, the increase, if there was one, in the size of the compressed file was very
small, it was for the small blocksizes that a significant loss occurred, increasing the
file size by tens of percents. For example, for the two test files mentioned in the next
section, the file size grew, for a block of size b = 16, by 22.4% and 44.8%, while for
b = 1K, the increase was only by 0.2% and 2.2%, respectively.

To understand this behavior, recall that we start the dynamic encoding by as-
suming a uniform distribution of the characters, a quite arbitrary initialization which
does not really matter if the blocksize is large enough. Recall also that all frequen-

S.T.Klein, E.Opalinsky, D. Shapira: Synchronizing Dynamic Huffman Codes 33

cies are rescaled at the end of each block, so that the influence of the distribution
of characters which are several blocks behind the current point is quickly vanishing.
If the blocksize itself is small, only a part of the alphabet will appear in these few
preceding blocks, and the frequencies on which the current encoding will be based will
still include many elements with the initial frequency 1. For large enough blocks, such
low frequency elements will practically have no influence, but for small blocks, they
might be dominant, yielding an overall distribution which is still close to uniform,
and therefore far from the real distribution within the input text.

Algorithm 1: Compression Algorithm
Generalized Dynamic Huff(T, b)
1 HT ← Huffman Tree for uniform distribution of Σ
2 while input T is not exhausted do

3 encode the following b characters according to HT

4 update frequencies of Σ according to the last b characters
5 divide all frequencies by 2, rounding up
6 update HT according to updated frequencies

The formal algorithm, with parameters T , the input text, and b, the block size
measured in number of characters, is given below. The tree reconstructed in the
decompression phase maintains the same distribution as in the compression phase,
and by agreeing to construct canonical trees [13] and keeping the symbols at each
level in some agreed order, e.g., lexicographically, encoder and decoder are able to
reconstruct the same tree.

4 Experimental Results

We applied our experiments on two text files:

1. the Bible (King James version) in English, denoted by ebib, over an alphabet of
52 characters, in which the text has been stripped of all punctuation signs except
blank;

2. the French version of the European Union’s JOC corpus, denoted by ftxt , which is
a collection of pairs of questions and answers on various topics used in the arcade
evaluation project [14], over an alphabet of 127 characters.

Table 1 presents the compression performance of the various algorithms on both
data files. The second, third and fourth columns present the original file size, the size
of the compressed file, using static Huffman, and the file size after applying Vitter’s
algorithm. The last columns give the sizes of the generalized dynamic algorithm for
block sizes 2iK, 0 ≤ i ≤ 4, and the results when also division is applied is given in the
line below. All figures are given in Bytes. The best compression results for each file
are highlighted in bold. As can be seen, the efficiency of the blockwise compression
algorithm is not inferior, on these examples, to the original one updating after each
processed character, in both variants, with and without division. As fewer Huffman
trees are constructed throughout the execution of the algorithms when larger blocks
are considered, the savings in processing times are also obvious.

In order to assess the synchronization abilities of the different algorithms, several
measures should be considered. The problem lies in the fact that the damage caused

34 Proceedings of the Prague Stringology Conference 2018

File Original Static Vitter Generalized

K 2K 4K 8K 16K

ebib 3711020 1942474 1942008 1942247 1942628 1943383 1944885 1947814

Generalized & Division

1945709 1942012 1941187 1941847 1948863

ftxt 7610765 4399422 4379161 4378724 4379065 4379748 4381080 4383696

Generalized & Division

4476947 4429719 4411830 4406138 4406566

Table 1. Compression performance - ebib

by a single erroneous bit during the decoding process may be judged on different
levels, each of which requires another definition. Indeed, assume a single such error has
occurred, then at least one, and possibly several, codewords will be falsely interpreted.
However,

1. the fact that there were wrong interpretations means that some frequencies will
be incorrect, but this does not necessarily mean that the corresponding Huffman
trees have changed; the damage might thus be locally restricted and have no long
range impact.

2. Even if the changes in the frequencies are extended enough to trigger also a change
in the shape of the trees, the set of codeword lengths, and at times, even the set
of codewords themselves, may still remain unchanged, so that one could use other
Huffman trees which are still identical. For instance, Vitter’s algorithm constructs
a very specific form of the Huffman tree, and a small perturbation in the fre-
quencies may change its shape altogether, as in the example in Figure 4(d), but
had canonical Huffman trees been used instead of Vitter’s, these small alterations
might have a lesser or no impact at all, and the original and altered frequencies
might yield the same canonical tree.

3. Finally, the frequency fluctuations may be significant enough to imply even dif-
ferent canonical Huffman trees.

To deal with the first option, we need a measure D1 evaluating some “distance”
between the erroneous frequency distribution caused by the bit flip, and the correct
distribution, according to which the file has been encoded. A well-known such measure
is the Kullback-Leibler (KL) divergence [11]: for two probability distributions E =
{e1, . . . , en}, which is possibly erroneous, and T = {t1, . . . , tn}, which we assume to
be the true one, define

D1(E, T) = DKL(E‖T) =
n∑

i=1

ei log
ei
ti
.

The KL divergence is a one-sided, asymmetric, non-negative distance from E to T ,
which equals zero if and only if E = T .

However, D1 is not an appropriate measure for our application. First, it depends
on the location of where the error has occurred. If this happened close to the beginning

S.T.Klein, E.Opalinsky, D. Shapira: Synchronizing Dynamic Huffman Codes 35

of the file, the impact of a change of ±1 on the yet small accumulated frequencies
will be larger than if the error had occurred significantly later. Moreover, the involved
probabilities are all very small, their ratios are close to 1 and overall, on all our tests,
the values of the KL divergence were of the order of 10−5 to 10−10, from which hardly
any conclusion could be derived.

This suggests using a more descriptive measure for the distance between distri-
butions, based on the absolute difference between corresponding frequencies, rather
than on the relative one implied by the probabilities. If the erroneous and true fre-
quency vectors are denoted EF = {ef1, . . . , efn} and TF = {tf1, . . . , tfn}, respectively,
we define

D2(EF, TF) =
n∑

i=1

|efi − tfi|.

Table 2 presents the results of comparing the D2 distances between the distribu-
tions produced by erroneous and true decodings by the three algorithms considered
herein: Vitter’s dynamic Huffman coding, with updates after each processed char-
acter, the blockwise dynamic algorithm using cumulative frequencies and blocksize
b = 1024 encoded characters, and the same but using rescaling by dividing the fre-
quencies by 2 after each block. The table gives the numbers for a typical example,
presenting in the column headed i the distance D2 as measured at the end of the ith
block after the error. The test file was ebib, in which the first bit of codeword number
380245 was flipped.

File 1 2 3 4 5 6 7 8 9 10 20 30 40 50

Vitter 10 12 12 12 10 12 38 60 60 60 210 2344 4000 6114
blocks – cumulative 8 8 8 8 8 8 8 8 8 8 8 8 8 8
blocks – scaled 5 4 3 2 2 1 0 0 0 0 0 0 0 0

Table 2. Comparing the distance D2(EF, TF) between erroneous and true decoding

We see that for Vitter’s algorithm, the sum of the absolute differences is about
10–12 at the beginning, but then increases exponentially yielding the snowball effect
mentioned above. A large distance means that the distributions are completely dif-
ferent, in accordance with the example in Figure 2. On the other hand, the distance
for the algorithm processing blocks stays constant at 8 for all the considered blocks,
and even for hundreds thereafter. The frequencies, though, do increase gradually, just
their difference remains constant, which indicates that synchronization has been re-
gained. For the block variant with scaling, not only is there synchronization, but the
difference also is zeroed by the repeated divisions.

As a different number of occurrences of the characters does not necessarily refer to
an incorrect decoding, our final experiment is to measure the percentage of successful
decodings for the various algorithms. We repeated the bit-flip test as the one reported
in Table 2 one hundred times, with different flip positions, and checked not only the
distance, but also whether there was ultimately synchronization after the error or
not. To avoid a bias in the choice of the bit position of the error, the 2000th bit of
100 different blocks of b characters has been flipped, with b ∈ {1K, 2K, 4K, 8K}.

Table 3 presents the number of unsynchronized decodings as a function of block
size for all three algorithms. Synchronization has been assessed in this experiment by

36 Proceedings of the Prague Stringology Conference 2018

Block Size 1K 2K 4K 8K

Vitter 100 100 100 100

blocks – cumulative 23 17 17 16

blocks – scaled 22 15 13 12

intersection 4 2 3 7

Table 3. Number of unsynchronized decodings out of 100 tests as a function of block sizes.

comparing the last blocks at the end of the decoded files and checking that they are
identical. The number appearing on the intersection line reports the number of cases
that are unsynchronized in both blockwise algorithms.

In none of our experiments did Vitter’s decoding synchronize with the correct
decoding, whereas the block variants did get back on track in about 80% of the cases
or more. This figure seems to be improving with growing block sizes. There seems also
to be a small improvement of the variant using scaling over that using cumulative
frequencies, though the full extent of the improvement might not be caught by our
measure: the major advantage of periodically dividing the numbers is that erroneous
fluctuations are ultimately “forgotten”. This amnesic behavior allows the decoding
to synchronize not only the text sent to the output file, but also the Huffman data
structure used to enable the decoding. In the cumulative variant, the texts might
match even for long stretches, but there is no guarantee that the differing Huffman
trees will not, at some later stage, induce errors again.

5 Conclusion

Motivated by the lack of synchronization in the case of the occurrence of even a
single bit error in a file that has been compressed by a standard dynamic Huffman
code, we explored generalizations that get updated periodically, not necessarily after
each character. Two blockwise dynamic variants were considered, with and without
scaling, suggesting an improvement in processing time and robustness against single
bit errors, without hurting the compression performance.

A synchronization point of a correct and incorrect decoding of static Huffman
coding may be defined as the first position after that of the error in the encoded file,
for which both decodings reach the root of the tree at the same time. However, locating
the synchronization point in the dynamic variants was found to be a bit tricky, as two
different Huffman trees should be compared in parallel. Moreover, small fluctuations
in the frequencies may trigger later divergences of the decoding, even if temporarily
synchronization has been restored. We therefore approximated the distances between
both decodings by summing the frequency differences.

S.T.Klein, E.Opalinsky, D. Shapira: Synchronizing Dynamic Huffman Codes 37

References

1. N. Faller: An adaptive system for data compression, in Record of the 7-th Asilomar Conference
on Circuits, Systems and Computers, 1973, pp. 593–597.

2. A. Fraenkel and S. Klein: Bidirectional Huffman coding. The Computer Journal, 33(4)
1990, pp. 296–307.

3. R. Gallager: Variations on a theme by Huffman. IEEE Transactions on Information Theory,
24(6) 1978, pp. 668–674.

4. E. Gilbert and E. Moore: Variable-length binary encodings. The Bell System Technical
Journal, 38, pp. 933–968.

5. D. Huffman: A method for the construction of minimum redundancy codes. Proc. of the IRE,
40 1952, pp. 1098–1101.

6. S. Klein and D. Shapira: Pattern matching in Huffman encoded texts. Inf. Process. Manage.,
41(4) 2005, pp. 829–841.

7. S. Klein and D. Shapira: Compressed pattern matching in JPEG images. Int. J. Found.
Comput. Sci., 17(6) 2006, pp. 1297–1306.

8. S. Klein and D. Shapira: Integrated encryption in dynamic arithmetic compression, in Lan-
guage and Automata Theory and Applications - 11th International Conference, LATA 2017,
Ume̊a, Sweden, March 6-9, 2017, Proceedings, 2017, pp. 143–154.

9. S. Klein and Y. Wiseman: Parallel Huffman decoding with applications to JPEG files. The
Computer Journal, 46(5) 2003, pp. 487–497.

10. D. Knuth: Dynamic Huffman coding. Journal of Algorithms, 6(2) 1985, pp. 163–180.
11. S. Kullback and R. Leibler: On information and sufficiency. Annals of Mathematical

Statistics, 22(1) 1951, pp. 79–86.
12. G. Longo and G. Galasso: An application of informational divergence to Huffman codes.

IEEE Trans. Information Theory, 28(1) 1982, pp. 36–42.
13. E. Schwartz and B. Kallick: Generating a canonical prefix encoding. Commun. ACM, 7(3)

1964, pp. 166–169.
14. J. Véronis and P. Langlais: Evaluation of parallel text alignment systems: The arcade

project, in parallel text processing. pp. 369–388.
15. J. Vitter: Design and analysis of dynamic Huffman codes. Journal of the ACM (JACM),

34(4) 1987, pp. 825–845.
16. J. Ziv and A. Lempel: A universal algorithm for sequential data compression. IEEE Trans.

Information Theory, 23(3) 1977, pp. 337–343.
17. J. Ziv and A. Lempel: Compression of individual sequences via variable-rate coding. IEEE

Trans. Information Theory, 24(5) 1978, pp. 530–536.

